Purities of toxins were checked on HPLC by reverse-phase Lichrosorb RP-18 (4 × 250 mm) (E. Merck) in CH_3CN/H_2O (65:35) detected by UV (254 nm). Ophiobolin A and 6-epi A were identified by NMR and MS spectra.

Toxin Bioassays. A leaf puncture bioassay test similar to that previously reported for corn and sorghum was conducted on rice cultivars S-201, Samnam, Nakdong, Aichi-asahi, ES-18, and IR-8.4

6-Epiophiobolin I (1): colorless oil (0.5 mg/8 L); $R_f 0.50 \text{ (A)}$ and 0.21 (B); $[\alpha]_{\rm D}$ -4° (c 0.4, CHCl₃); EILRMS, m/z (relative intensity) 384 (21), 366 (85), 266 (35), 257 (31), 199 (27), 165 (90), 109 (100); EIHRMS, $C_{25}H_{38}O_3$ (M⁺; obsd m/z 384.2665, calcd m/z 384.2666) and $C_{25}H_{34}O_2$ (M⁺ – H₂O; obsd m/z 366.2559, calcd m/z366.2560); ¹H NMR (250 MHz) δ 6.04 (1 H, d, J = 8.1 Hz, H8), 5.99 (1 H, s, H4), 5.09 (1 H, d, d, J = 1.2, 9.9 Hz, H18), 4.40 (1 H, d, d, d, J = 5.5, 8.8, 8.8 Hz, H17), 3.87 (2 H, s, H21), 3.55 (1 H, d, J = 6.5 Hz, H6), 3.17 (1 H, m, H2), 2.05 (3 H, s, H20), 1.70 (3 H, s, H24), 1.67 (3 H, s, H25), 1.04 (3 H, d, J = 7.1 Hz, H23),0.79 (3 H, s, H22).

Identification of ophiobolin I (2): $R_f 0.47$ (A) and 0.34 (B); EIHRMS, $C_{25}H_{36}O_3$ (M⁺; obsd m/z 384.2665, calcd 384.2666) and $C_{25}H_{34}O_2$ (M⁺ – H₂O; obsd m/z 366.2559, calcd 366.2560); ¹H NMR $(250 \text{ MHz}) \delta 5.93 (1 \text{ H, s, H4}), 5.76 (1 \text{ H, d}, J = 4.1 \text{ Hz, H8}), 5.11$ (1 H, d, J = 8.7 Hz, H18), 4.55 (1 H, d, d, J = 7.3, 15.6 Hz, H17),4.13 (1 H, d, J = 11.8 Hz, H21), 3.88 (1 H, d, J = 11.8 Hz, H21), 3.64 (1 H, d, J = 2.6 Hz, H6), 2.50 (1 H, d, d, J = 2.6, 14.6 Hz,H2), 2.19 (1 H, q, d, J = 7.0, 13.4 Hz, H15), 2.05 (3 H, s, H20), 1.67 (3 H, s, H24), 1.63 (3 H, s, H25), 0.99 (3 H, d, J = 7.0 Hz, H23), 0.96 (3 H, s, H22).

Acid Treatment of 1. A solution of 1 (1 mg) in methanol (1 mL) was added to the solution of 1 N HCl (1 mL) in methanol and then placed at room temperature for 18 h. The reaction mixture was poured into aqueous $NaHCO_3$ and then extracted with ethyl acetate. After evaporation of the organic layer under nitrogen, the residue was purified with preparative TLC (CHCl₃/MeOH, 14:1) to afford a single product. It was identified as ophiobolin I (2) with ¹H NMR, HRMS, TLC, and HPLC.

Ophiobolin J (3): colorless oil (20 mg/8 L); $R_f 0.29$ (A) and 3.31 (B); $[\alpha]_{\rm D}$ +48° (c 1.7 CHCl₃); EILRMS, m/Z (relative intensity) 400 (6), 382 (27), 364 (10), 356 (22), 300 (24), 283 (40),

(12) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2993-2995.

282 (31), 255 (22), 191 (33), 165 (8c, 110 (63), 109 (100); EIHRMS, $C_{25}H_{36}O_4$ (M⁺; obsd m/z 400.2611, calcd 400.2614) and $C_{25}H_{34}O_3$ $(M^+ - H_2O; obsd m/z 382.2502, calcd m/z 382.2509); {}^{1}H NMR$ $(400 \text{ MHz}) \delta 6.02 (1 \text{ H}, \text{t}, J = 1.2 \text{ Hz}, \text{H4}), 5.14 (1 \text{ H}, \text{d}, \text{d}, \text{d}, J$ = 1.2, 1.5, 8.8 Hz, H18), 4.68 (1 H, d, d, J = 3.8, 6.2 Hz, H8), 4.52 (1 H, d, J = 13.9 Hz, H21), 4.51 (1 H, d, d, J = 8.8, 15.6 Hz, H17), 4.41 (1 H, d, J = 13.9 Hz, H21), 4.04 (1 H, br d, J = 11.2 Hz, H2), 2.10 (3 H, d, J = 0.5 Hz, H20), 1.70 (3 H, d, J = 1.2 Hz, H24), 1.64 (3 H, d, J = 1.2 Hz, H25), 1.16 (3 H, s, H22), 1.03 (3 H, d, J = 6.8 Hz, H23); ¹³C NMR (125 MHz) δ 202.3 (s, C5), 177.5 (s, C3), 149.1 (s, C7), 138.5 (s, C6), 134.5 (s, C19), 131.2 (d, C4), 126.8 (d, C18), 95.9 (s, C14), 74.8 (d, C8), 71.6 (d, C17), 62.4 (t, C21), 52.4 (d, C10), 49.8 (t, C1), 44.3 (d, C2), 42.3 (t, C16), 41.6 (s, C11), 41.3 (t, C12), 36.0 (d, C15), 30.8 (t, C9), 30.6 (t, C13), 25.8 (q, C24), 21.7 (q, C22), 18.1 (q, C25), 17.3 (q, C20), 16.2 (q, C23).

8-Deoxyophiobolin J (4): colorless needle crystal (1.2 mg/8 L); mp 138–140 °C; R_f 0.56 (A) and 0.49 (B); $[\alpha]_D$ +8° (c 0.15, CHCl₃); EILRMS, m/z (relative intensity) 384 (18), 366 (27), 302 (15), 284 (30), 266 (19), 201 (39), 199 (30), 165 (83), 109 (100); EIHRMS, $C_{25}H_{36}O_3$ (M⁺; obsd m/z 384.2663, calcd m/z 384.2666) and $C_{25}H_{34}O_4$ (M⁺ – H₂O; obsd m/z 366.2558, calcd m/z 366.2560); ¹H NMR (250 MHz) δ 6.00 (1 H, s, H4), 5.65 (1 H, d, J = 9.0 Hz, H18), 4.52 (1 H, d, d, J = 7.4, 15.7 Hz, H17), 4.36 (1 H, d, J = 13.0 Hz, H21), 4.31 (1 H, d, J = 13.0 Hz, H21), 3.17 (1 H, d, J= 12.0 Hz, H2), 2.07 (3 H, s, H20), 1.66 (3 H, s, H24), 1.60 (3 H, s, H25), 1.06 (3 H, s, H22), 0.99 (3 H, d, J = 6.9 Hz, H23).

Bis(*p*-bromobenzoate) of 3: $R_f 0.75$ (CHCl₃/MeOH, 50:1); ¹H NMR (250 MHz) δ 7.91 (1 H, d, J = 8.3 Hz, Ar H), 7.80 (1 H, d, J = 8.3 Hz, Ar H), 7.56 (1 H, d, J = 8.3 Hz, Ar H), 7.51 (1 H, J = 8.3 Hz, Ar H), 6.00 (1 H, s, H4), 5.95 (1 H, d, J = 5.8 Hz, H8), 5.73 (1 H, d, J = 13.4 Hz, H21), 5.65 (1 H, d, J = 13.4 Hz, H21), 5.04 (1 H, d, J = 8.5 Hz, H18), 4.51 (1 H, d, d, J = 7.2, 15.0 Hz, H17), 3.74 (1 H, d, J = 10.9 Hz, H2), 2.02 (3 H, s, H20), 1.57 (3 H, s, H24), 1.53 (3 H, s, H25), 1.19 (3 H, s, H22), 1.02 (3 H, d, J = 6.8 Hz, H23).

Acknowledgment. F.S. and N.T. thank Dr. J. Uzawa and Mrs. T. Chijimatsu for 1D NMR measurements and Mr. Y. Esumi and Mr. J. Sears for collecting HRMS data. This work was supported in part by NSF Grant DMB-8607347 to J.C. and G.A.S., the Montana Agricultural Experiment Station, and the Rockefeller Foundation.

Stereochemistry of the N-Methyl Group in Salts of Tropane Alkaloids

Robert Glaser,*¹ Qin-Ji Peng,² and Arthur S. Perlin²

Department of Chemistry, Ben-Gurion University of the Negev, Beersheva 84105, Israel, and Department of Chemistry, McGill University, Montreal, Quebec H3A 2A7, Canada

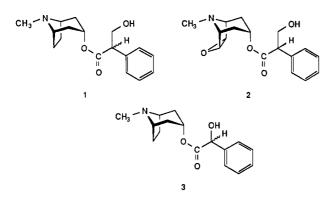
Received August 19, 1987

¹H and ¹³C NMR slow exchange limit spectra of atropine sulfate/mesylate, homatropine hydrobromide, and benztropine mesylate solutions concur in showing that, at equilibrium, the equatorial:axial N-CH₃ diastereometric mixture was ca. 7:1 (D_2O) and ca. 18:1 (CD_2Cl_2). A similar preponderance of equatorial N-CH₃ stereochemistry was observed for cocaine salts in both solvents (only equatorial isomer noted in D_2O ¹³C NMR spectrum, while ca. 18:1 equatorial:axial ratio found in CD₂Cl₂). The N-CH₃ orientation in scopolamine hydrobromide was strikingly solvent sensitive and underwent a reversal from an equatorial:axial N-CH₃ ratio of ca. 1:18 (D₂O) to ca. 18:1 (CD₂Cl₂). Solid-state CP-MAS ¹³C NMR spectra of crystalline equatorial N-CH₃ (8s)-atropine sulfate and axial N-CH₃ (9r)-scopolamine hydrobromide confirmed the stereochemical assignments for major and minor diastereomers in solution.

Introduction

Atropine [dl-hyoscyamine³ (1)], scopolamine [l-hyoscine⁴ (2)], and homatropine⁵ (dl-3) are antimuscarinic (or atro-

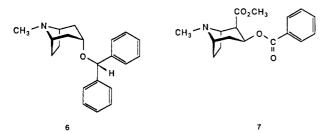
⁽¹⁾ Ben-Gurion University of the Negev.


⁽²⁾ McGill University.

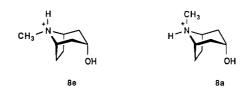
⁽³⁾ Windholz, M., Ed. The Merck Index, 10th ed.; Merck: Rahway, NJ, 1983; pp 878-879 and references therein.

⁽⁴⁾ Reference 3, p 1209 and references therein.

pinic) drugs that inhibit the action of acetylcholine on structures innervated by postganglionic parasympathetic nerves.⁶ l-Hyoscyamine (1) and l-hyoscine (2) are natural products isolated from belladonna plants [atropa bella-


⁽⁵⁾ Reference 3, p 684 and references therein.
(6) Weiner, N. In *The Pharmacological Basis of Therapeutics*, 7th ed.; Goodman, L. S., Gilman, A., Rall, T. W., Murad, F., Eds.; Macmillan: New York, 1985; pp 130-144.

donna (nightshade) and hyoscyamus niger (henbane), respectively] and consist of $(C_{\alpha}-S)$ -tropic acid esters of the respective 3-endo-substituted amino alcohols, tropine (4) and scopine (5).^{6,7} Homatropine (3) is a synthetic ace-



tylcholine antagonist. Benztropine⁸ (6), a synthetic tropine ester, is a centrally acting muscle relaxant used in the treatment of Parkinson's disease.9 *l*-Cocaine¹⁰ $[(1R,2R,3S,5S)^{11}$ -(7)] is a coca alkaloid isolated from the erythroxylon coca plant¹² and was the first local anesthetic to be discovered.13

Tropane alkaloids readily undergo epimerization in solution via nitrogen inversion and result in the formation of (N-r,s or -R,S) $N-CH_3$ diastereomers. A similar diastereomerization process for the corresponding salts proceeds via a prototropic shift at the labile chirotopic (or achirotopic) stereogenic¹⁴ nitrogen atom and involves nitrogen inversion in the free base. Increasing NMR time scale lifetimes of the two equilibrium species enables the recording of spectra for both diastereomers at the slow exchange limit (SEL) for isomer interconversion. A very early ¹H NMR investigation of this SEL phenomenon was performed at 40 MHz by Closs¹⁵ in 1959: an acidic aqueous solution (pH 1) of 4 afforded a ca. 16:1 preference of equatorial N-CH₃ (8s)-tropine hydrochloride (8e) over the axial (8r)-diastereomer (8a) at ambient temperature.¹⁵ Two unequally populated doublets [both ${}^{3}J(NH-CH_{3})$ ca. 5 Hz (H₂O, pH 1); two $^+$ NDCH₃ singlets in acidic D₂O (pD

- (b) Bianchine, J. R., ref 6, pp 473-490.
 (10) Reference 3, pp 348-349 and references therein.
 (11) Hardegger, E.; Ott, H. Helv. Chim. Acta 1955, 38, 312.
 (12) Wöhler, F. Ann. Chem. Pharm. 1862, 121, 372.
- (13) Ritchie, J. M.; Greene, N. M., ref 6, pp 302-321.
 (14) Mislow, K.; Siegel, J. J. Am. Chem. Soc. 1984, 106, 3319.
- (15) Closs, G. L. J. Am. Chem. Soc. 1959, 81, 5456.

1)] became one weighted-average broadened singlet at pH 6 (H_2O) via chemical exchange decoupling.¹⁵ Closs also reported a ca. 20:1 e:a mixture of 1a.e.DCl atropine deuteriochloride N-CH₃ diastereomers under the same acidic aqueous conditions.¹⁵ These two atropine 8r,s diastereomers were also observed in the acidic CD₃OD ¹³C NMR spectrum.¹⁶ The use of reduced temperature to increase the lifetimes of two equilibrium free-base species was demonstrated by Schneider and Stürm¹⁷ using ¹³C NMR at -70 °C [ca. 20:1 preference of the equatorial N-CH₃ 8s diastereomer of tropine free base (4e)]. Configurational assignments were based on the γ -gauche effect¹⁸ due to N-CH₃.

Spectral parameters at the ¹H NMR fast exchange limit (FEL) for interconversion (in this case dissolution in D_2O without addition of acid) relate to a "time-averaged" structure that does not exist chemically. More caution must be taken in drawing stereochemical conclusions from FEL data versus that obtained from studies at the SEL. In addition, based upon the magnitude of chemical shift differences between the particular exchanging nuclei, heteronuclear NMR studies can result in spectra having different kinetic exchange rate regimes. Thus, averaged ¹H NMR FEL spectral parameters were noted for atropine sulfate $(1.0.5H_2SO_4)$ recorded in D_2O without addition of excess acid,¹⁵ while the ¹³C NMR spectrum afforded two sets of externally diastereotopic SEL carbon signals (i.e., the direct observation of two diastereomers).¹⁹ Wenkert et al.20 performed the first ¹³C NMR study on tropane alkaloid free bases [equatorial N-CH₃ preference was noted using FEL chemical shift arguments for nortropane, tropane, and C(3)-oxygenated derivatives]. Numerous ¹H and ¹³C NMR investigations have been performed on the free $bases^{20-32}$ and $salts^{15,16,19,27,30,31,33,34}$ of the above-mentioned

- (16) Pook, K. H.; Schulz, W.; Banholzer, R. Liebigs Ann. Chem. 1975, 1499.
- (17) Schneider, H. J.; Stürm, L. Angew. Chem., Int. Ed. Engl. 1976, 15, 545.
- (18) Dalling, D. K.; Grant, D. M. J. Am. Chem. Soc. 1974, 96, 1827 and references therein.
- (19) Feeney, J.; Foster, R.; Piper, E. A. J. Chem. Soc, Perkin Trans. 2 1977, 2016.
- (20) Wenkert, E.; Bindra, J. S.; Chang, C. J.; Cochran, D. W.; Schell, F. M. Acc. Chem. Res. 1974, 7, 46.
- (21) Johns, S. R.; Lamberton, J. A. J. Chem. Soc., Chem. Commun. 1965, 458.
- (22) Bishop, R. J.; Fodor, G.; Katritzky, A. R.; Soti, F.; Sutton, L. E.; Swinbourne, F. J. J. Chem. Soc. C 1966, 74.

(23) Mandava, N.; Fodor, G. Can. J. Chem. 1968, 46, 2761.

- (24) Sinnema, A.; Maat, L.; Van Der Gugten, A. J.; Beyerman, H. C.
- Recl. Trav. Chim. Pays-Bas 1968, 87, 1027 (25) Ohashi, M.; Morishima, I.; Okada, K.; Yonezawa, T.; Nishida, T.
- J. Chem. Soc., Chem. Commun. 1971, 34. (26) Chappell, G. S.; Grabowski, B. F.; Sandman, R. A.; Yourtee, D. M. J. Pharm. Sci. 1973, 62, 414.
- (27) Hanisch, P.; Jones, A. J.; Casey, A. F.; Coates, J. E. J. Chem. Soc.,
- Perkin Trans. 2 1977, 1202. (28) Stenberg, V. I.; Narain, N. K.; Singh, S. P. J. Heterocycl. Chem. 1977, 14, 225
- (29) Taha, A. M.; Rücker, G. J. Pharm. Sci. 1978, 67, 775.
- (30) Carroll, F. I.; Coleman, M. L.; Lewin, A. H. J. Org. Chem. 1982, 47, 13.
 - (31) Avdovitch, H. W.; Neville, G. A. Can. J. Spectrosc. 1983, 28, 1.
- (32) Chazin, W. J.; Colebrook, L. D. J. Org. Chem. 1986, 51, 1243.
- (33) Simeral, L.; Maciel, G. E. Org. Magn. Reson. 1974, 6, 226.

⁽⁷⁾ Preparations of the deadly belladonna plants have been used therapeutically and as poisons for many centuries. The atropa belladonna shrub was named after Atropos (the oldest of the three Fates), known to be the one who cuts the Thread of Life (ref 6).

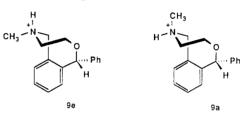
⁽⁸⁾ Reference 3, p 160 and references therein.

Table I. Aliphatic ¹H NMR Slow Exchange Limit Chemical Shift Values for the Equatorial N-CH₃ Diastereomers of Atropine Sulfate (1e•0.5H₂SO₄), Atropine Mesylate (1e•CH₃SO₂OH), Scopolamine Hydrobromide (2e•HBr), Homatropine Hydrobromide (3e•HBr), Benztropine Mesylate (6e•CH₃SO₂OH), and Cocaine Hydrochloride (7e•HCl)^a

$\delta_{ m H}$	$1e \cdot 0.5H_2SO_4$	le-CH ₃ SO ₂ OH	2e·HBr	3e-HBr	6e-CH ₃ SO ₂ OH	7e-HCl	
H(1)	3.51	3.57	3.68	3.49	3.73	4.27	
H(5)	3.64	3.71	3.82	3.67	3.73	4.17	
H(21)	2.88	2.62	3.21	2.98	2.56	ь	
H(41)	2.96	2.71	3.31	3.11	2.56	3.07	
H(22)	1.75	1.80	1.77	1.72	ca. 2.1	3.50	
H(42)	1.96	2.01	1.99	ca. 2.0	ca. 2.1	2.25	
H(31), H(32)	5.14^{c}	5.10 ^c	5.18°	5.16°	3.76°	5.46^{d}	
H(61)		1.51	2.76	1.02	ca. 2.5	ca. 2.1	
H(71)		2.14	3.62	ca. 1.7	ca. 2.5	ca. 2.1	
H(62)		ca. 2.0	Ь	ca. 2.0	ca. 2.1	ca. 2.4	
H(72)		ca. 1.8	Ь	ca. 2.0	ca. 2.1	ca. 2.4	
N-CH ₃ (eq)	2.60	2.67	2.87	2.59	2.73	3.01	
$[N-CH_3(ax)]^e$	[2.73]	[2.80]	[2.83]	[2.71]	[2.80]	[2.93]	
N-H	12.07	10.46	11.84	10.95	10.64	10.53	
$H(\alpha)$	3.79	3.80	3.79	5.14^{\prime}	5.44 ^g	ь	
$H(\beta)$	3.84	3.84	3.83	b	ь	ь	
$H(\beta')$	4.17	4.16	4.16	b	Ь	Ь	
$O-CH_3$	Ь	b	Ь	b	Ь	3.76^{h}	
$S-CH_3$	b	2.74	ь	Ь	2.68	Ь	

^a Ppm downfield from tetramethylsilane, 400 MHz [with the exception of $1e\cdot 0.5H_2SO_4$ (200 MHz)], CD_2Cl_2 , 294 K. ^bNot applicable. ^cH(31). ^dH(32). ^e δ -value for axial N-CH₃ in (N-r,R) diastereomer given in square brackets. ^f5.13 ppm for 3a·HBr. ^gBenzhydryl-H; 5.46 ppm for 6a·CH₃SO₂OH. ^h3.73 ppm for 7a·HCl.

Table II. Aliphatic ¹H NMR Slow Exchange Limit Homonuclear Coupling Constants (Hz) for the Equatorial N-CH₃ Diastereomers of Atropine Mesylate (le•CH₃SO₂OH), Scopolamine Hydrobromide (2e•HBr), Homatropine Hydrobromide (3e•HBr), Benztropine Mesylate (6e•CH₃SO₂OH), and Cocaine Hydrochloride (7e•HCl)^a

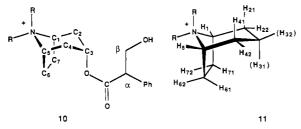

· · · · · · · · · · · · · · · · · · ·										
1 e •CH ₃ -		6e•CH ₃ -								
SO ₂ OH	2e∙HBr	3e-HBr	SO_2OH	7e∙HCl						
3.4 (3)	3.3 (6)	4.4 (1)		b						
3.2 (3)	3.5(2)	4.0 (5)		2.5 (3)						
3.6 (4)	3.2(5)	3.2 (6)		2.2(2)						
3.4(2)	3.2(5)			3.1 (4)						
<1	<1									
<1	<1	<1								
7.2	ь	6.7(5)		7.6 (3)						
6.9	Ь									
-16.1(3)	-16.4 (4)	-16.4 (4)	-14.6	ь						
-14.9 (8)	-16.2(3)	-15.9 (4)	-14.6	-14.3(3)						
4(1)	4.9 (3)	4.6 (3)	4.5	Ь						
4 (1)°	$5.1 (3)^{c}$	4.3 (6) ^c	4.5^{c}	$12.4 \ (4)^d$						
<1 ^e	<1 ^e	<1 ^e	<1 ^e	$7.1 \ (2)^{f}$						
<1 ^g	<1 ^g	<1 ^g	<18	$6.2 (2)^{h}$						
5.0	5.1(2)	5.2	5.0	5.1(1)						
[5.0]	[5.2]	[5.5]	[5.0]	[5.2(1)]						
		-14.2(1)								
	-	/->								
• •										
		5.2(2)								
4.5 (4)	ь									
		$1.7 (4)^{j}$		$2.7 (5)^{j}$						
				$2.8(2)^{j}$						
	$\begin{array}{c} \mathrm{SO_2O\dot{H}} \\ \hline 3.4 \ (3) \\ 3.2 \ (3) \\ 3.6 \ (4) \\ 3.4 \ (2) \\ <1 \\ <1 \\ <1 \\ 7.2 \\ 6.9 \\ -16.1 \ (3) \\ -14.9 \ (8) \\ 4 \ (1) \\ 4 \ (1)^c \\ <1^e \\ <1^g \\ 5.0 \\ \hline [5.0] \end{array}$	$\begin{array}{c cccc} & {\bf SO_2OH} & {\bf 2e\text{-HBr}} \\ \hline {\bf 3.4} (3) & {\bf 3.3} (6) \\ {\bf 3.2} (3) & {\bf 3.5} (2) \\ {\bf 3.6} (4) & {\bf 3.2} (5) \\ {\bf 3.4} (2) & {\bf 3.2} (5) \\ {\bf <1} & {\bf <1} \\ {\bf ~14.9} (8) & {\bf -16.4} (4) \\ {\bf -14.9} (8) & {\bf -16.2} (3) \\ {\bf 4} (1) & {\bf 4.9} (3) \\ {\bf 4} (1)^c & {\bf 5.1} (3)^c \\ {\bf <1^e} & {\bf <1^e} \\ {\bf <1^g} & {\bf <1^g} \\ {\bf 5.0} & {\bf 5.1} (2) \\ \hline \\ \hline [5.0] & [5.2] \\ \hline {\bf -14.0} (4) & {\bf b} \\ {\bf -14.2} (4) & {\bf b} \\ {\bf 9.9} (3) & {\bf 3.0} (1) \\ {\bf 4.3} (4) & {\bf b} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

^a Hz, standard deviation given in parentheses, 400 MHz, CD_2Cl_2 , 294 K. ^b Not applicable. ^c J(32-41). ^d J(31-41). ^e J(22-32). ^f J(22-31). ^s J(32-42). ^h J(31-42). ⁱ J value for axial NH-CH₃ in (N-r,R) diastereomer given in square brackets. ^jSign not determined.

alkaloids. Unfortunately, some of these reports suffer from misassignments of chemical shifts, e.g., the N-CH₃ chemical shift for scopolamine hydrobromide (2·HBr) [reported as 53.42, ³³ 34.31, ³¹ or 25.72¹⁹ ppm (D₂O)].

We have recently shown that dissolution of equatorial N-CH₃ crystalline nefopam hydrochloride (**9e**-HCl) anal-

gesic afforded a mixture of two N-CH₃ diastereomers (**9a,e**-HCl) (e:a ratio ca. 2:3 in ambient temperature CD₂Cl₂ or ca. 1:1 in acidic D₂O).³⁵


As a continuation of the above study, we report the N-CH₃ stereochemistry of tropane cations in both D₂O and CD₂Cl₂ solutions. In addition, solid-state CP-MAS ¹³C NMR spectra of crystalline scopolamine hydrobromide (2a·HBr) [axial N-CH₃ (X-ray crystallography)] and atropine sulfate (1e·0.5H₂SO₄) (equatorial N-CH₃) are presented for definitive assignment of the corresponding N-CH₃ signals in solution.

Results and Discussion

Tables I-IV list ¹H and ¹³C NMR SEL spectral parameters for atropine sulfate $(1.0.5H_2SO_4)$, atropine mesylate (1-CH₃SO₂OH), scopolamine hydrobromide (2-HBr), homatropine hydrobromide (3·HBr), benztropine mesylate (6-CH₃SO₂OH), and cocaine hydrochloride (7-HCl) (N-r,s or R,S)-N-CH₃ diastereomeric mixtures. Atropine sulfate (1.0.5H₂SO₄), homatropine hydrobromide (3.HBr), and benztropine mesylate (6·CH₃SO₂OH) all gave SEL D₂O ¹³C NMR spectra showing two $N-CH_3$ diastereomers (ca. 7:1 ratio). Scopolamine hydrobromide (2·HBr) gave a dynamic spectrum at 295 K showing decidedly broadened signals for C(1,5), C(2,4), and especially N-CH₃ (see numbering diagram 10). Two drops of trifluoroacetic acid (TFA) added to the 3-mL ¹³C NMR sample (ca. 0.15 M) dramatically sharpened all spectral lines and now enabled the SEL observation of two species (ca. I:18). This behavior is in accord with the known higher acidity for protonated scopolamine cations ($pK_a = 7.55$) vis-å-vis that for protonated atropine and homatropine cations ($pK_a =$

⁽³⁴⁾ Baker, J. K.; Bourne, R. F. J. Heterocycl. Chem. 1978, 15, 165.

⁽³⁵⁾ Glaser, R.; Cohen, S.; Donnell, D.; Agranat, I. J. Pharm. Sci. 1986, 75, 772.

9.25 and 9.7, respectively).³⁶ The pH values of 0.15 M aqueous solutions of scopolamine hydrobromide (2·HBr), atropine sulfate $(1.0.5 H_2 SO_4)$, and homatropine hydrobromide (3·HBr) were measured as: 5.10, 7.00, and 6.65, respectively. This suggests that TFA attenuation of free-base concentration slowed the relatively fast rate of nitrogen inversion in aqueous solutions of scopolamine salts. Avdovitch and Neville³¹ also noted broadened lines in the ¹³C NMR spectrum (D_2O) of tropine free base (4) that dramatically sharpened upon addition of "a few drops" of TFA. However, they ascribed this broadening to intermolecular H-bonding relaxation phenomena within associated species (which are then subsequently destroyed upon addition of TFA).³¹ The ¹³C NMR spectrum of cocaine hydrochloride (7·HCl) (0.05 M in D₂O), with narrow lines at 298 K similar to that observed in the nondynamic SEL spectra of 1,3,6·HX, showed the discernible presence of only one N-CH₃ diastereomer. Addition of TFA to the 3-mL NMR solution of 7-HCl ($pK_a = 8.5$) did not alter the ¹³C NMR spectrum.

Atropine sulfate $(1.0.5H_2SO_4)$ was found to be very poorly soluble in CD_2Cl_2 . This precluded the measurement of ¹³C¹H NMR spectra for this sample. A marked improvement in CD_2Cl_2 solubility was noted when the divalent sulfate anion was replaced by a monovalent mesylate anion. Similar higher CD_2Cl_2 solubilities were seen for benztropine mesylate (6.CH₃SO₂OH), while intermediate degrees of solubility were found for salts of 2, 3, and 7 containing bromide or chloride anions.

Major and minor species (ca. 18:1) were observed in both the ¹H and ¹³C NMR spectra for all five alkaloid salts of 1-3, and 6, 7 in CD_2Cl_2 . Both species are protonated in this medium as evidenced by major, minor N-CH₃ doublet multiplicity $[{}^{3}J(NH-CH_{3})$ ca. 5 Hz]. Aside from CH_{3} resonances, other signals for the minor species were not clearly ascertained in the ¹H NMR spectra. Enantiotopic ¹H and ¹³C nuclei within the tropine and scopine moieties were rendered internally diastereotopic³⁷ and thus anisochronous by the presence of the stereogenic chirotopic¹⁴ $C(\alpha)$ atoms in the tropic and mandelic acid moieties. This diastereotopicity found for the amine salts of 1-3 at the ^{1}H SEL (and at the ^{13}C SEL 16,19,31,33) was also noted at the ¹H FEL for the salts of 1 and 2^{19} and for the free bases 1-3.21,23,25,28,29,31,32

Carbon-13 NMR Spectral Parameters. ¹³C NMR assignments were made by using the single-frequency offset resonance decoupling (SFORD) technique (50 MHz, D_2O) or the DEPT³⁸ pulse sequence (100 MHz, CD_2Cl_2). With the exception of the D_2O solution of *l*-cocaine hydrochloride (7.HCl), all the tropane cations (irrespective of the solvent used) gave spectra having two unequal-magnitude N-CH₃ signals [33 (1) and 41 (3) ppm]. N-CH₃ orientations giving rise to the two above-mentioned reso-

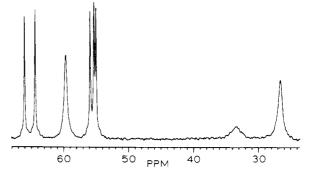


Figure 1. ¹³C¹H NMR (50.3 MHz, 295 K) aliphatic region of scopolamine hydrobromide (2·HBr) showing dynamic exchange broadening in D_2O .

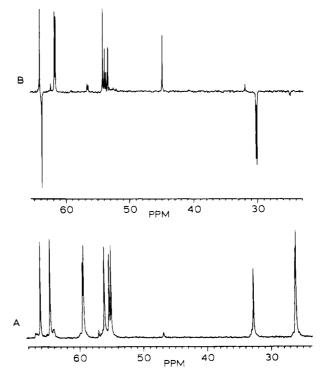


Figure 2. Trace A: ¹³C{¹H} NMR (50.3 MHz, 298 K) aliphatic region of (9r,s)-scopolamine hydrobromide (2a,e-HBr) N-CH₃ diastereomeric mixture, a:e ratio ca. 18:1 (0.15 M solution of 2a·HBr in 3 mL of D_2O and 2 drops of trifluoroacetic acid). Trace B: ¹³C¹H NMR (100.6 MHz, DEPT pulse sequence, 135° pulse width, 294 K) aliphatic region of (9r,s)-scopolamine hydrobromide (2a,e-HBr) N-CH₃ diastereomeric mixture, a:e ratio ca. 1:18 (in CD₂Cl₂).

nances were unequivocally shown to be axial and equatorial, respectively, by means of solid-state CP-MAS ¹³C NMR. Crystalline $(9r, C_{\alpha}-S)$ -hyoscine hydrobromide [(-)-scopolamine hydrobromide $(2a \cdot HBr)$]^{39a} and $(8s, C_{\alpha}$ -S)-hyoscyamine hydrobromide [(-) enantiomer of atropine hydrobromide $(1e \cdot HBr)]^{39b,40}$ have axial and equatorial N-CH₃ groups, respectively, as determined by single-crystal X-ray diffraction analysis. Equatorial N-CH₃ orientations are usually the rule in tropane molecules due to unfavorable cis-1,3 nonbonded interactions between axial N-CH₃ and piperidine-ring axial protons: e.g., X-ray crystal structures of (8s)-tropine hydrobromide,⁴¹

⁽³⁶⁾ Newton, D. W.; Kluza, R. B. In Principles of Medicinal Chem-istry, 2nd ed.; Foye, W. O., Ed.; Lea and Febiger: Philadephia, 1981; pp 901 - 908

⁽³⁷⁾ Mislow, K.; Raban, M. In Topics in Stereochemistry; Allinger, N. L., Eliel, E. L., Eds.; Wiley: New York, 1967; Vol. 1, p 1.
(38) Doddrell, D. M.; Pegg, D. T.; Dendall, M. R. J. Magn. Reson.

^{1982, 48, 323.}

^{(39) (}a) Pauling, P. J.; Petcher, T. J. Nature (London) 1970, 228, 674. (b) Pauling, P. J.; Petcher, T. J. J. Chem. Soc., Chem. Commun. 1969, 1001.

⁽⁴⁰⁾ Kussäther, von E.; Haase, J. Acta Crystallogr., Sect. B 1972, B28, 2896.

⁽⁴¹⁾ Viser, J. W.; Manassen, J.; De Vries, J. D. Acta Crystallogr. 1954, 7, 288.

Table III. ¹³ C ¹ H NMR Slow Exchange Limit Chemical Shift Values for Equatorial (e) and Axial (a) N-CH ₃ Diastereomeric
Mixtures of Atropine Sulfate (1a,e • 0.5H ₂ SO ₄), Atropine Mesylate (1a,e • CH ₃ SO ₂ OH), and Scopolamine Hydrobromide
$(2a e \bullet HBr)^a$

	$1.0.5H_2SO_4/1.CH_3SO_2OH^b$					2·HBr ^c					
	eq <i>N</i> -methyl			ax N-methyl		eq N-methyl		ax N-methyl			
$\delta_{\rm C}$	D ₂ O	CD_2Cl_2	solid	D_2O	CD_2Cl_2	D_2O	CD_2Cl_2	D_2O	CD_2Cl_2	solid	
C(1)	64.59	62.29	61.76	60.93	58.31	63.94	61.81	59.34	56.58	56.69	
C(5)	64.71	62.39	61.76	61.03	58.41	64.09	61.96	59.48	56.77	57.81	
C(2)	36.75	34.53	35.00	30.13	28.49		30.17	26.10	24.89	23.95	
C(4)	36.89	34.70	35.47	30.13	28.61		30.34	26.22	25.01	24.71	
C(3)	68.07	65.07	68.57		64.21	66.73	64.30	66.05	62.53	64.82	
C(6)	25.43	23.59	24.17	27.45	25.44		53.49	55.01	52.15	53.09	
C(7)	25.67	24.05	26.07	27.67	25.80		54.01	55.30	52.62	53.09	
N-CH ₃	41.11	39.27	39.56	33.95	31.95	46.86	45.01	32.74	32.00	33.19	
C(α)	56.21	54.50	56.76	56.21	54.50	56.06	54.32	56.06	54.32	53.09	
$C(\beta)$	64.71	63.97	65.53	64.71	64.13	64.57	63.95	64.57	64.06	61.38	
<i>C</i> =0	175.53	d	172.81	175.53	d	174.86	d	174.86	d	172.07	
C_{ipso}	137.83	d	138.01	137.83	d	138.16	d	138.16	d	139.00	
C	131.62	129.23	132.89	131.62	129.23	131.66	129.27	131.66	129.27	133.78	
C _m	130.74	128.45	129.63	130.74	128.45	130.85	128.29	130.85	128.29	132.38	
C_p	130.63	128.12	127.40	130.63	128.12	130.69	128.29	130.69	128.29	128.29	
S-CH ₃	е	39.42 ^f	е	е	39.42^{f}	е	е	е	е	е	
0											

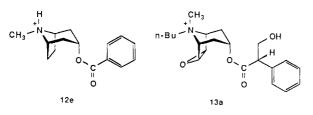

^a Ppm downfield from tetramethylsilane (except for aqueous solutions, where 3-(trimethylsilyl)-1-propanesulfonic acid sodium salt was used as internal reference); hexamethylbenzene used as secondary reference for solid-state spectra. Spectra recorded in CD_2Cl_2 were measured at 100 MHz (294 K, DEPT pulse sequence; those in D_2O (294 K) and the solid state (301 K, TOSS pulse sequence) were measured at 50 MHz. Assignments within a diastereotopic pair are arbitrary. ^b 1e,a-0.5H₂SO₄, 1e,a-CH₃SO₂OH, and 1e-0.5H₂SO₄ recorded in D₂O (e:a ratio ca. 7:1), CD_2Cl_2 (e:a ratio ca. 18:1), and the solid state, respectively. ^c2e,a-HBr recorded in D_2O (e:a ratio ca. 18:1) and CD_2Cl_2 (e:a ratio ca. 18:1); 2a-HBr recorded in the solid state. ^dQuaternary carbons C_{ipso} and C=O not observed in DEPT. ^eNot applicable. ^fS-CH₃ value may be interchanged with the equatorial N-CH₃ value in CD_2Cl_2 solution.

Table IV. ¹³ C ¹ H NMR Slow Exchange Limit Chemical Shift Values for Equatorial (e) and Axial (a) N-CH ₃ Diastereomeric								
Mixtures of Homatropine Hydrobromide (3a,e•HBr), Benztropine Mesylate (6a,e•CH ₃ SO ₂ OH), and Cocaine Hydrochloride								
$(7a.e \bullet HCl)^a$								

δ _C	3e·HBr		3a ∙HBr		6e∙CH₃SO₂OH		6a.CHSO₂OH		7e∙HCl		7a∙ HCl	
	D_2O	CD_2Cl_2	D_2O	$\mathrm{CD}_{2}\mathrm{Cl}_{2}$	D ₂ O	$\mathrm{CD}_2\mathrm{Cl}_2$	D_2O	CD_2Cl_2	D_2O	$\mathrm{CD}_2\mathrm{Cl}_2$	D_2O	
C(1)	64.59	62.29	60.51	58.07	64.70	63.03	60.97	58.95	66.48	63.94	61.74	
C(5)	64.76	62.43	60.67	58.20	64.70	63.03	60.97	58.95	65.64	63.58	59.84	
C(2)	36.87	34.53	29.73	28.92	36.50	34.81	29.67	28.78	48.69	47.34	45.64	
C(4)	36.92	34.53	29.78	28.92	36.50	34.81	29.67	28.78	35.13	33.36	30.05	
C(3)	68.57	66.98		65.91	68.74	67.25	68.25	66.52	66.85	64.03	63.29	
C(6)	25.23	23.80	27.27	25.35	25.61	24.66	27.64	26.42	26.13	25.55	27.62	
C(7)	25.69	24.45	27.67	25.98	25.61	24.66	27.64	26.42	25.08	23.27	27.44	
$N-CH_3$	41.16	39.38	34.05	31.97	40.64	39.55	33.41	32.02	41.43	40.48	33.06	
C(α)	75.57	73.48	75.57	73.48	82.81 ^b	81.74^{b}	82.62^{b}	81.74^{b}	d	d	d	
<i>C=</i> 0	175.44	с	175.44	с	d	d	d	d	169.51	165.89	165.89	
C = O(OMe)	d	d	d	d	d	d	d	d	175.71	170.08	170.08	
Cipso	140.10	с	140.10	с	144.36	142.48	144.36	142.48	130.95	129.50	129.50	
C e	129.62	127.06	129.62	127.06	130.63	128.83	130.63	128.83	131.48	128.89	128.89	
C_m^{e}	131.70	129.14	131.70	129.14	128.84	126.91	128.84	126.91	131.97	129.94	129.94	
C _p	131.70	129.14	131.70	129.14	129.62	127.89	129.62	127.89	136.90	133.94	133.94	
$S-CH_3$	d	d	d	d	40.71^{f}	39.46	40.71^{f}	39.46 ^f	d	d	d	
O-CH ₃	d	d	d	d	d	d	d	d	55.83	53.42	52.72	

^a Ppm downfield from tetramethylsilane (except for aqueous solutions, where 3-(trimethylsilyl)-1-propanesulfonic acid sodium salt was used as internal reference). Spectra recorded in CD₂Cl₂ were measured at 100 MHz (294 K, DEPT pulse sequence); those in D₂O were measured at 50 MHz (294 K). Assignments within a diastereotopic pair or C(6, 7) in 7e,a HCl are arbitrary. 3a,e HBr, 6a,e CH₃SO₂OH, and 7e,a·HCl recorded in D₂O (both 3e:a and 6e:a ratios ca. 7:1; 7e·HCl epimer >95%) and in CD_2Cl_2 (all e:a ratios ca. 18:1). ^bBenzhydryl-C. ^cQuaternary carbons C_{ipeo} and C=O not observed in DEPT. ^dNot applicable. ^eAssignments of ortho and meta carbons may be interchanged. $^{\prime}S-CH_3$ value may be interchanged with the equatorial $N-CH_3$ value in CD_2Cl_2 solution.

(1R,2R,3S,5S,8S)-cocaine hydrochloride,⁴² $(8s,C_{\alpha}-S)$ -hyoscyamine hydrobromide,^{39b,40} (8s)-pseudotropine free base,43 (8s)-O-benzoyltropine hydrochloride (12e),44

(42) Gabe, E. J.; Barnes, W. H. Acta Crystallogr. 1963, 16, 796.

(8s)-O-benzoylpseudotropine hydrochloride,⁴⁵ (8s)-benztropine mesylate,46 and (3r,8s)-3-bromotropane hydrobromide⁴⁷ [$(9r, C_{\alpha}-S)$ -hyoscine hydrobromide³⁷ and related compounds: $(9s, C_{\alpha}-S)$ -N-butylhyoscinium bromide (13a),⁴⁸ $(9s, C_{\alpha}-S)$ -scopolamine N-oxide hydrobromide⁴⁹ are ex-

- (40) Statistics, 11, 200
 (41) Jones, P. J. J. Chem. Soc., Perkin Trans. 2 1976, 1359.
 (45) Chananont, P.; Hamor, T. J. J. Chem. Res. (M) 1978, 5064.
 (46) Jones, P. G.; Kennard, O.; Horn, A. S. Acta Crystallogr., Sect. B 1978, B34, 3125.

⁽⁴³⁾ Schenk, H.; MacGillavry, C. H.; Skolnik, S.; Laan, J. Acta Crys-

⁽⁴⁷⁾ Hamor, T. J.; Kings, N. Acta Crystallogr., Sect. B 1980, B36, 3153. (48) Leger, J. M.; Gadret, M.; Carpy, A. Acta Crystallogr., Sect. B 1978, B34, 3705.

ceptions].

The solid-state CP-MAS ¹³C NMR chemical shift for the axial N-CH₃ in crystalline scopolamine hydrobromide (2a-HBr) was 33.19 ppm. The corresponding absorbance for N-CH₃ in crystalline atropine sulfate (1e-0.5H₂SO₄) was 39.56 ppm and was in complete accord with an equatorial N-CH₃ orientation. The N-CH₃ signal in the CP-MAS ¹³C NMR spectrum was confirmed by a dipolar dephasing experiment⁵⁰ based on less efficient solid-state relaxation for methyl carbons (via-á-vis methylene and methine carbons). After a suitable delay period was introduced prior to FID acquisition, N-CH₃ and C_{quaternary} magnetization was still noted in the spectrum. The solid-state N-CH₃ absorbances of 33.19 and 39.56 ppm were correlated with the 33 (1) and 41 (3) ppm signals for N-CH₃ in D₂O or CD₂Cl₂ solution.

In this manner, configurational descriptors were assigned to the two N-CH₃ diastereomers that gave rise to the set of unequal intensity signals. Thus, the ¹³C resonances in the equatorial N-CH₃ (8s)-tropane salts were found to be δ 41 (3) (CH₃), 25 (1) and 35 (2) (CH₂), and 63 (1) and 67 (2) [CH, two 63 (1) ppm signals usually seen]. Similarly, the corresponding absorbances for the axial N-CH₃ 8repimeric salts in this study were observed as δ 33 (1) [CH₃], 27 (1) and 28 (2) (CH₂), and 59 (2) and 65 (2) [CH, two 59 (2) ppm signals usually seen]. CH_2 assignments can be made by comparison of the C(2) signals in piperidines and pyrrolidines²⁰ or by consideration of the spectral parameters of cocaine hydrochloride (7·HCl) (only one CH_2 in the piperidine ring). The 25 (1) and 35 (2) ppm CH_2 signals arise from C(6,7) and C(2,4) nuclei, respectively, in the equatorial N-CH₃ 8S diastereomer, while the 27 (1) and 28 (2) ppm signals come from the corresponding carbons in the axial N-CH₃ 8R epimer. The most deshielded methine carbon is $\hat{C}(3)$ for each diastereomer, in accord with both the expected adjacent oxygen electronegativity effect and the similar slightly higher field chemical shifts for the diastereotopic C(1,5) pair. Tropic acid C(α),C(β) signals [55 (1) and 64 (1) ppm, respectively] were assigned according to known values.^{32,33} Differential assignments were not made within a diastereotopic pair [e.g., C(1,5)] or within the 7-HCl heterotopic C(6,7) pair.

SEL ¹³C NMR spectral parameters of only one diastereomeric pair of equatorial, axial N-CH₃ tropane cations were reported in the literature [atropine sulfate (1a,e- $0.5H_2SO_4$) in D_2O^{19} and atropine hydrobromide (1a,e-HBr) in acidic CD₃OD¹⁶]. ¹³C NMR data on single species for atropine sulfate (1.0.5H₂SO₄),^{31,33} scopolamine hydrobromide (2·HBr),^{19,33} scopolamine hydrochloride (2·HCl),³¹ and cocaine hydrochloride $(7-HCl)^{31}$ in D₂O solution are also known. The scopolamine hydrobromide (2-HBr) $N-CH_3$ signal has been erroneously reported as being at 53.42 ppm³³ [actually one of the C(6,7) pair] and also at 25.72 ppm^{19} [one of the C(2,4) pair]. Moreover, Simeral and Maciel³³ assigned the 53.75 ppm signal [one of the C(6,7) pair] as that of C(1,5), while assigning the 58.26 and 58.05 ppm [C(1,5)] signals as those of C(6,7). The very broadened low-intensity N-CH₃ signal ($W_{1/2} = 55$ Hz) in the 2·HBr spectrum expresses its dynamic nature in D_2O and probably lies at the root of this confusion. Our 32.74 ppm value [from a narrow axial N-CH₃ resonance, sharpened by addition of two drops of TFA (vide ante)] is comparable with the 34.31 ppm³¹ value reported by Avdovitch and Neville. While these authors added TFA to an aqueous solution of tropine free base (4) for spectral line sharpening (vide ante), no mention was made of a similar treatment for the scopolamine salt. When systematic differences arising from different reference standards are taken into account, our chemical shift values are in good agreement with those in the literature, and with the exception of the discrepancies noted above, our assignments of $1\cdot0.5H_2SO_4$, $2\cdotHBr$, and $7\cdotHC1$ ¹³C NMR resonances are in accord with corrections made by Pook et al.,¹⁶ Feeney et al.,¹⁹ Baker et al.,³⁴ and Avdovitch and Neville.³¹

The five alkaloid salts of this study all show typical upfield shifts for piperidine-ring carbons β , γ , and δ to axial N-CH₃ vis-á-vis those for corresponding nuclei in the equatorial 8s epimer.^{16,18,51} Average upfield shifts of $\Delta \delta$ 4.1 (7), 6 (1), and 0.9 (4) ppm were found for piperidinering carbons β , γ , and δ to N-CH₃, respectively, in salts of 1-3, 6 and 7. The ethano bridge C(6,7) atoms γ to N-CH₃ in the axial 8r diastereomers are correspondingly shifted downfield by an average of $\Delta \delta$ 2.0 (6) ppm relative to those in the equatorial 8s epimers. As expected, axially oriented N-CH₃ are shifted upfield by an average of $\Delta \delta$ 7.3 (2) ppm versus their equatorially disposed counterparts. Scopolamine hydrobromide (2.HBr) is an exception, since the *N*-*C*H₃ shift difference is decidedly greater [$\Delta \delta$ 14 (1) ppm, D_2O or CD_2Cl_2 solution]. Equatorial N-CH₃ in 2e-HBr is particularly deshielded in both solvents [46 (1) ppm] relative to more typical 40 (1) ppm values found for $N-CH_3$ in 1e-HBr. Close proximity of the scopolamine equatorial $N-CH_3$ nucleus to the transannular oxirane oxygen atom $[r(eq-NC\cdots O) = 2.76 \text{ Å in scopolamine model compound}]$ $13a]^{52}$ is likely to be behind this additional deshielding of $\Delta\delta$ ca. 5.75 ppm. Similar 33 (1) ppm values were noted for the more distant axial N-CH₃ in both scopolamine, atropine cations (see Table III).

Proton NMR Spectral Parameters. In CD₂Cl₂, all five tropane salts exhibited two NHCH₃ doublets in the same ratio (ca. 18:1)! Assignments of equatorial, axial descriptors to the two unequally populated ¹H NMR species were made via ¹³C NMR correlation with the minor, major N-CH₃ 8r, s diastereomers in CD₂Cl₂. Tropine skeleton axial, equatorial N-CH3 ¹H chemical shift differences exhibit the converse relationship to those for $^{13}\mathrm{C}$ $N-CH_3$, as expected. Using quaternization studies, Closs¹⁵ demonstrated that the axial N-CH₃ in a series of tropine and pseudotropine derivatives was $\Delta \delta$ ca. 0.17 (5) ppm deshielded vis-á-vis the average value observed for the equatorial set. Similarly, in our ¹H NMR (CD₂Cl₂) SEL study, the axial N-CH₃ in 1a,e,3a,e-HX was $\Delta \delta$ 0.13 (1) ppm deshielded vis-á-vis equatorial N-CH₃. However, it is the unequivocally characterized equatorial N-CH₃ in the **2a,e-HBr** pair that is now $\Delta \delta 0.05$ ppm deshielded relative to its externally diastereotopic axial counterpart. The neighboring oxirane oxygen preferentially deshielded the closer equatorial N-CH₃ compared to the more distant axial N-CH₃ (model compound 13a minimum nonbonded distance $r(\text{NCH} \cdot \cdot \cdot \text{O}) = 2.22 \text{ Å} [\text{eq-CH}] \text{ vs } 4.36 \text{ Å} [\text{ax.-CH}]$). The oxirane oxygen substituent effect can also be seen from the known ¹H NMR spectral parameters for methiodide quaternary ammonium salt^{23,53} and amine N-oxide⁴⁹

⁽⁴⁹⁾ Huber, C. S.; Fodor, G.; Mandava, N. Can. J. Chem. 1971, 49, 3258.

^{(50) (}a) Opella, S. J.; Frey, G. J. Am. Chem. Soc. 1979, 101, 5854. (b) Opella, S. J.; Frey, G.; Cross, B. P. J. Am. Chem. Soc. 1979, 101, 5856.

⁽⁵¹⁾ Levy, G. C.; Lichter, R. L.; Nelson, G. L. Carbon-13 Nuclear Magnetic Resonance Spectroscopy, 2nd ed.; Wiley: New York, 1980; pp 56-57.

^{(52) (8}s)-O-Benzoyltropine hydrochloride (12e)⁴⁴ and (9s,C_a-S)-N-butylhyoscinium bromide (13a)⁴⁸ are models for (8s)-atropine and (9r,C_a-S)-scopolamine geometry, respectively, since hydrogen coordinates were not given for 1e-HBr^{39b,40} nor for 2a-HBr.^{39a}
(53) Fodor, G.; Chastain, R. V., Jr.; Frehel, D.; Cooper, M. J.; Man-

⁽⁵³⁾ Fodor, G.; Chastain, R. V., Jr.; Frehel, D.; Cooper, M. J.; Mandava, N.; Gooden, E. L. J. Am. Chem. Soc. 1971, 93, 403 and references therein.

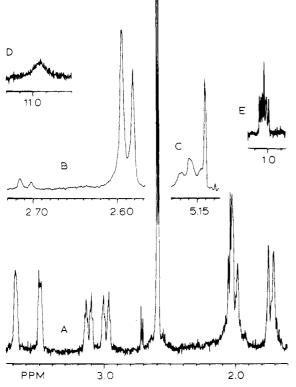


Figure 3. Trace A: 1.60–3.75 ppm ¹H NMR (400.1 MHz, 294 K) aliphatic region of (8r,s)-homatropine hydrobromide (3a,e-HBr) N-CH₃ diastereomeric mixture, a:e ratio ca. 1:18 (in CD₂Cl₂). Trace B: 2.57–2.73 ppm axial,equatorial N-CH₃ region (0.25× reduced intensity). Trace C: 5.12–5.18 ppm region showing H(3) overlapped with H(α), (0.25× reduced intensity). Trace D: N-H. Trace E: 0.85–1.15 ppm H(61) region.

scopolamine diastereomers. Equatorial N-CH₃ is $\Delta\delta 0.25$ (4) ppm⁵⁴ deshielded by the cis-1,3-transannular oxirane oxygen, as seen by comparisons of scopine vs tropine derivatives: [2e·HBr vs 1e,3e·HX; 2·MeI vs 1·MeI; 5·MeI or 6-exo-hydroxytropine methiodide vs 1·MeI; and 2·(9r)-Noxide vs 1·(8r)-N-oxide]. Similar comparisons of the oxirane oxygen substituent effect on the farther axial N-CH₃ show smaller mixed shielding/deshielding of ± 0.05 (4) ppm.⁵⁴ X-ray crystallographic studies^{49,55} removed the earlier confusion²³ regarding oxirane substituent effects in scopine (5) type derivatives.

A similar ca. 18:1 equatorial:axial diastereomeric ratio in CD_2Cl_2 for all five (1-3, 6 and 7) salts suggests that the 2-exo-carbomethoxy substituent in *l*-cocaine hydrochloride (7.HCl) does not present a very formidable cis-1,3 steric barrier to axial N-CH₃ in this solvent. The X-ray crystallographic molecular geometry for l-cocaine methiodide⁵⁶ (14) shows that torsion angle C(1)-C(2)-C_{carbonyl}-O_{methoxy} opened up to -46° [putatively to accommodate the axial (pro-R)-CH₃] relative to the -17° value found for crystalline 7e·HCl⁴² (axial NH). The axial (pro-R)-CH₃ in 14 lies above the plane delineated by C=O and $O_{methoxy}$ [nonbonded distances $r(NCH_3 \cdots OCH_3) = 3.31$ Å, (NC- $H_3 \cdots C = O$ = 2.98 Å, and $r(NCH_3 \cdots O = C) = 3.35$ Å]. The 1,3-cis-transannular C=O bond magnetic anisotropy shields $7a \cdot HCl$ axial N-CH₃ vs $7e \cdot HCl$ equatorial N-CH₃ (see Table I). Nonobservance of an axial 7a·HCl 8R diastereomer in the ¹³C NMR SEL spectrum recorded in D₂O

suggests a different behavior for the axial CO_2CH_3 moiety in this protic, more polar medium as compared to that found in CD_2Cl_2 .

Diastereotopicity for each of the H(61,71) and H(62,72)pairs and the efficient dispersion of shielding constants by the high magnetic fields employed in this study enabled the determination of hitherto unreported vicinal and geminal coupling constants between ethano bridge synperiplanar and anticlinal⁵⁷ nuclei (see Table II). ¹H coupling networks were identified by using COSY-30 2D NMR⁵⁸ together with selective 1D ¹H NMR decoupling. Nuclei in one diastereotopic half of the dissymmetrized tropane skeleton gave rise to the lower field signals in four out of five pairs of internally diastereotopic protons [H-(1,5), H(21,41), H(22,42), and H(62,72)], while those in the other half of the molecule gave rise to the higher field signals within each pair. For the purpose of this discussion, coupling networks within each of the tropane halves were differentiated by assigning the higher field signals in each pair as H(1), H(21), H(22), and H(72) (labeling experiments must be performed to ascertain their correct location in either the 1R or 5S half). COSY-30 showed that the lower field signal of the H(61,71) endo pair was linked to the higher field signal in the H(62,72) exo pair via a cross-peak pattern perpendicular to the diagonal. On the basis of the negative coupling constant, the lower field signal in the H(61,71) pair and the higher field signal in the H(62,72) pair for atropine mesylate $(1e \cdot CH_3SO_2OH)$ were respectively assigned as H(71) and H(62). The nonobservance of measurable ${}^{3}J(1-71)$ and ${}^{3}J(5-61)$ coupling constants for scopolamine hydrobromide (2e-HBr) is consistent with ± 77 (3)° H(1)-C(1)-C(7)-H(71) [H(5)-C-(5)-C(6)-H(61)] torsion angles in the solid-state scopolamine model 13a.

The conformation of the tropic acid ABX nuclei⁵⁹ for both atropine and scopolamine cations in D₂O has been determined based on averaged rotamer population J(AB)and J(AX) (or J(BX)) coupling constants.¹⁹ With Dimitrov's method,⁵⁹ our SEL results [e.g., ${}^{2}J(\beta\beta') = -11.6$, ${}^{3}J(\alpha\beta) = 9.4$, and ${}^{3}J(\alpha\beta')$ (the J(AB)) = 5.2 Hz for **2e**·HBr] show the antiperiplanar-[(C_{α})-phenyl,(C_{β})-hydroxyl] conformation to be the major species (ca. 74%) in CD₂Cl₂ solution, as it is for the **2a**·HBr epimer in D₂O,¹⁹ and in the crystalline³⁷ state. The **2e**·HBr antiperiplanar-[(C_{α})-carboxyl,(C_{β})-hydroxyl] and gauche–gauche conformations in CD₂Cl₂ were calculated to be ca. 21% and ca. 5%, respectively.

Hitherto unreported long-range ${}^{4}J(22-42)$ and ${}^{4}J(41-62)$ coupling constants (signs not determined) for cocaine and homatropine cations are consistent with extended "W"type arrangements within piperidine-ring chair conformations for the ecgonine and tropine moieties in CD₂Cl₂ solution (see Table II). Carroll et al.³⁰ reported ${}^{4}J(22-42)$ = 0.8 Hz for free base 7. Evidence for a chair conformation also comes from the similar 3-4 Hz ${}^{3}J(1-21), {}^{3}J(5-41)$ and ${}^{3}J(1-22), {}^{3}J(5-42)$ coupling constants expected for bridgehead protons mutually synclinal⁵⁷ (gauche) to adjacent C(2) or C(4) methylene protons. Ring deformation at C(3) in the cationic chair-type tropine and scopine moieties [presumably due to nonbonded interactions between the endo H(61,71) protons and the axial oxygen atom at C-(3)]^{19,22} is evident from lack of observed coupling between

(58) Bax, A.; Freeman, R. J. Magn. Reson. 1981, 44, 542.
(59) Dimitrov, V. S.; Spassov, S. L.; Radeva, T. Z.; Ladd, J. A. J. Mol. Struct. 1975, 27, 167.

⁽⁵⁶⁾ Shen, M.; Ruble, J. R.; Hite, G. Acta Crystallogr., Sect. B 1975, B31, 2706.

⁽⁵⁷⁾ Gunstone, F. D. Guidebook to Stereochemistry; Longman: London, 1975; pp 55-56.

⁽⁵⁴⁾ Calculated from data in this work and from ref 23 and 49. (59) Dimit

⁽⁵⁵⁾ MacGillavry, C. H.; Fodor, G. J. Chem. Soc. 1964, 597.

H(32) and either H(22) or H(42), while ${}^{3}J(21-32)$ and ${}^{3}J$ -(32-41) values are 4-5 Hz. Single-crystal X-ray diffraction determined torsion angles in 12e and 13a provide models⁵² for semiquantitative Karplus-type^{60,61} comparisons with the chair conformation piperidine-ring geometries of atropine and scopolamine cations in solution. Coupling constants ${}^{3}J(21-32), {}^{3}J(32-41)$ and ${}^{3}J(22-32), {}^{3}J(32-42)$ noted for 1e and 2e salts are in accord with relevant torsion angles for crystalline 12e and 13a: H(21)-C(2)-C(3)-H(32) $[H(32)-C(3)-C(4)-H(41)] = \pm 36 (3)^{\circ} \text{ and } H(22)-C(2)-C-C(4)$ (3)-H(32) [H(32)-C(3)-C(4)-H(42)] = ± 80.1 (1)°.44,48 Some distortion at C(3) is also noted for the ecgonine ring of cocaine hydrochloride (7e·HCl) in CD₂Cl₂. Evidence for this is provided by the synclinal (gauche) ${}^{3}J(22-31), {}^{3}J$ -(31-42) coupling constants, whose magnitudes are consistent with ± 41.4 (4)° H(22)-C(2)-C(3)-H(31) [H(31)-C-(3)-C(4)-H(42)] torsion angles in crystalline 7e·HCl.⁴²

Stability of Equatorial and Axial N-Methyl Scopolamine 9r,s Diastereomers. The N-CH₃ 8r,s diastereomeric equilibrium for atropine sulfate/mesylate (1. $0.5H_2SO_4/1 \cdot CH_3SO_2OH$), homatropine hydrobromide $(3 \cdot HBr)$, and benztropine mesylate $(6 \cdot HCH_3SO_2OH)$] at SEL ¹H and ¹³C NMR conditions was overwhelmingly in favor of the equatorial N-CH₃ 8s isomer both in D_2O (e:a ratio ca. 7:1) and in CD_2Cl_2 (e:a ratio ca. 18:1). Cocaine hydrochloride (7·HCl) also showed preponderance of the equatorial 8s diastereomer [<95% e (D₂O); e:a ratio ca. 18:1 (CD₂Cl₂)]. In addition, ¹³C NMR spectra (CDCl₂) of the free bases clearly showed an overabundance of the equatorial N-CH₃ diastereomer [based on FEL δ -values characteristic for equatorial N-CH₃: 40.0 (4) ppm^{20,28,29,31} (1) and 41.3 (3) ppm^{28,29,30,31} (7)].

(9r)-Scopolamine hydrobromide hemihydrate (2a·HBr) has been the odd man out in terms of its solid-state axial N-CH₃ 9r orientation.^{39a} The above-mentioned (9s)-Nbutyl quaternary ammonium salt 13a and 2-(9s)-N-oxide also have axial N-CH₃, but both were the kinetic products of preferential equatorial attack.53 In three ¹³C NMR studies on the scopolamine cation in D_2O , only one (Avdovitch and Neville³¹) correctly assigned the $N-CH_3$ absorbance (34.31 ppm) both in terms of its chemical shift and its axial 9r stereochemical disposition. These authors did not note the observance of the equatorial N-CH₃ 9s diastereomer.³¹ The same authors assigned axial N-CH₃ stereochemistry to scopolamine free base despite its ¹³C NMR FEL chemical shift of 42.45 ppm³¹ in CDCl₃. Similar FEL-averaged ¹³C NMR chemical shifts were reported prior to their study [43 (1) ppm^{20,29}]. Comparison of these FEL results with our ¹³C NMR SEL findings for the cation clearly points to equatorial N-CH₃ 9s stereochemistry for the major free-base equilibrium species. ¹H NMR FEL spectral results also support this assignment for the scopolamine free base major isomer. The N-CH₃ FEL signal in scopolamine (2) is $\Delta \delta$ 0.26 (1) ppm deshielded relative to the corresponding protons in atropine (1) [in either DMSO- d_6^{23} or CDCl₃³²].

Surprisingly, our ${\rm ^{1}\!\dot{H}}$ and ${\rm ^{13}\!C}$ NMR studies (CD_2Cl_2) at the SEL for N-CH₃ epimerization showed conversion of the axial N-CH₃ species in crystalline scopolamine hydrobromide^{39a} (2a·HBr) into the same ca. 18:1 e:a diastereomeric mixture as noted for atropine, homatropine, benztropine, and cocaine salts. In ¹³C NMR SEL spectra (D_2O) , as opposed to previous reports, equatorial N-CH₃

(9s)-scopolamine hydrobromide (2e-HBr) was now observed along with the 2a·HBr epimer. Equilibrium populations were reversed in this medium (ca. 1:18 e:a ratio).

The molecular geometry of axial N-CH₃ crystalline $(9s, C_{\alpha})$ -N-butylhyoscinium bromide methanol solvate⁴⁸ model compound 13a does not show less severe piperidine-ring nonbonded cis-1,3-diaxial interactions vis-a-vis those found in the pyrrolidine cycle. Minimum nonbonded distances calculated for 13a are $r(ax-NCH \cdots H(21) [H(41]))$ = 2.09 [2.18] Å while $r(eqNCH \cdots O) = 2.22$ Å. The oxirane oxygen is not expected to present an overly large steric barrier to an equatorial N-CH₃.

Eliel and co-workers recently made an extensive study of N-CH₃ diastereomerization in monocyclic N-CH₃ piperidine derivatives.⁶³ Moreover, opiate agonists and antagonists have also been found in acidic aqueous medium (or CD_2Cl_2) to exist in two diastereomeric forms differing in their N-alkyl orientation.⁶⁴⁻⁶⁷ Invocation of the Curtin-Hammett principle⁶⁸ reminds us that the disparate N-CH₃ isomer ratio provides no clues as to the receptor binding preference. Recently, using intramolecular transferred NOE measurements, Glasel and Borer showed that opiate agonists and antagonists had different N-alkyl configurations at the binding site of a specific anti-opiate monoclonal antibody fragment.⁶⁹ The axial diastereomer of the opiate antagonist nalorphine was found as the bound form, while the equatorial epimer was the preponderant solution species (ca. 5:1).⁶⁹

Additional studies on N-CH₃ epimerization in pharmacologically active agents are currently in progress.

Experimental Section

Atropine sulfate, scopolamine hydrobromide, homatropine hydrobromide, and benztropine mesylate were purchased from Aldrich Chemical Co. Atropine sulfate U.S.P. XIX and scopolamine hydrobromide U.S.P. XIX were gifts of Plantex (Israel) Ltd. *l*-Cocaine hydrochloride was obtained from Sigma Chemical Co. Atropine free base was obtained as a gift from Merck Frosst Canada Inc. Atropine mesylate was prepared by addition of a stoichiometric quantity of methanesulfonic acid to a solution of atropine free base in 1:1 ether/dichloromethane.

 ${}^{1}\dot{H}$ and ${}^{13}C$ NMR spectra (9.4 T, $CD_{2}Cl_{2}$, sealed 5- and 10-mm sample tubes, respectively) were obtained at 400.1 and 100.6 MHz, respectively, on a Bruker WH-400 Fourier transform spectrometer. ¹H NMR spectra (CD₂Cl₂) were also recorded at 200.1 and 299.9 MHz on Varian XL-200 and XL-300 Fourier transform spectrometers (4.7 and 7.0 T, respectively). Solid-state ¹³C NMR (50.3 MHz) were recorded on the Varian XL-200 spectrometer operating in the CP-MAS mode using the TOSS (total suppression of spinning sidebands)⁷⁰ technique. Hexamethylbenzene (132.1 ppm) was used as an external secondary reference for the solid-state spectra. Evolution delay periods of 24 μ s were used in solid-state dipolar dephasing experiments on atropine sulfate and scopola-mine hydrobromide. $^{13}\mathrm{C}$ NMR spectra (4.7 T, D₂O) were obtained at 50.3 MHz on a Bruker WP-200-SY Fourier transform spectrometer. The broad-band proton-decoupling technique was utilized for the ¹³C NMR spectra, and the deuteriated solvent was

^{(60) (}a) Karplus, M. J. Chem. Phys. 1959, 30, 11. (b) Karplus, M. J. Am. Chem. Soc. 1963, 85, 2870.

⁽⁶¹⁾ Altona and co-workers⁶² showed that relative orientation and electronegativity of X,Y substituents in -CH(X)-CH(Y)- segments modified the Karplus relationship for vicinal coupling constants.

⁽⁶²⁾ Haasnoot, C. A. G.; de Leeuw, F. A. A. M.; Altona, C. Tetrahedron 1980, 36, 2783.

⁽⁶³⁾ Éliel, E. L.; Kandasamy, D.; Yen, C. Y.; Hargrave, K. D. J. Am. Chem. Soc. 1980, 102, 3698.

^{(64) (}a) Glasel, J. A. Biochem. Biophys. Res. Commun. 1981, 102, 703. (b) Glasel, J. A.; Reiher, H. W. Magn. Reson. Chem. 1985, 23, 23

⁽⁶⁵⁾ Brown, C. E.; Roerig, S. C.; Fugimoto, J. M.; Burger, V. T. J. Chem. Soc., Chem. Commun. 1983, 1506.

⁽⁶⁶⁾ Eliel, E. L.; Morris-Natschke, S.; Kolb, V. M. Org. Magn. Reson. 1984, 22, 258,

⁽⁶⁷⁾ Glaser, R., unpublished results.
(68) Eliel, E. L. Stereochemistry of Carbon Compounds; McGraw-Hill: New York, 1962; pp 151-152, 237-239.
(69) Glasel, J. A.; Borer, P. N. Biochem. Biophys. Res. Commun. 1986,

^{141, 1267.}

⁽⁷⁰⁾ Dixon, W. T.; Schaefer, J.; Sefcik, M. D.; Stejskal, E. O.; McKay, R. A. J. Magn. Reson. 1982, 49, 341.

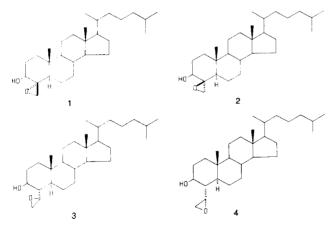
used as an internal lock. Residual protio CH₂Cl₂ solvent absorbances were used as internal secondary references (relative to tetramethylsilane). The internal reference in D_2O solutions was 3-(trimethylsilyl)-1-propanesulfonic acid sodium salt.

Diastereomeric ratio determinations in CD₂Cl₂ solutions were performed by integration of the externally diastereotopic ¹H NMR N-CH₃ signals. An indication of the diastereometic ratio in D₂O solutions was obtained by integration of the externally diastereotopic ¹³C NMR N-CH₃ signals.

Acknowledgment. We express our thanks to McGill University and the Natural Sciences and Engineering

Research Council of Canada for generous support and also to Drs. F. Sauriol, H. Koch, O. E. Edwards, and K. Vogel for kind assistance. Thanks are also extended by R.G. to the Ben-Gurion University of the Negev for permission to spend a summer sabbatical leave at McGill University. Dr. M. T. Phan Viet of the Laboratoire Régional de RMN, Université de Montréal, furnished the spectra recorded at 9.4 T. Gratitude is expressed to the Kreitman Family Endowment Fund, Ben-Gurion University of the Negay, for the purchase of a Bruker WP-200-SY FT-NMR spectrometer.

An Unusual Stereochemical Outcome of a Peroxyacid Epoxidation **Reaction:** Stereospecific Synthesis of (4'R)-Spiro[oxirane-2,4'-5' α -cholestan-3' β -ol]


I. Victor Ekhato,[†] J. V. Silverton,[‡] and Cecil H. Robinson*[†]

Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and the Laboratory of Chemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892

Received November 11, 1987

The enoxidation of 4-methylene- 5α -cholestan- 3β -ol (10) with m-chloroperoxybenzoic acid or with (+)- or (-)-diethyl tartrate/tert-butyl hydroperoxide-titanium tetraisopropoxide leads stereospecifically to (4'R)-spiro[oxirane-2,4'-5' α -cholestan-3' β -ol] (1). The relative stereochemistry of 1 has been established by X-ray crystallography. The lack of directional effect by the hydroxyl group in the epoxidation of the allylic alcohol 10 is unusual.

As part of a program aimed at the development of inhibitors of the cholesterol biosynthetic enzyme 4-methyl sterol oxidase¹ we required (4'R)- and (4'S)-spiro[oxirane-2.4'-5' α -cholestan-3' β -ol (1 and 2). We have shown²

previously that the homologous $4'\alpha$ -(2(S)-oxiranyl)- and $4'\alpha$ -(2(R)-oxiranyl)-3'\beta-hydroxy-5'\alpha-cholestanes (3 and 4) are potent inhibitors of this enzyme system. This report describes the stereospecific synthesis of (4'R)-spiro[oxirane-2,4'-5' α -cholestan-3' β -ol] (1) and the assignment of its relative stereochemistry by X-ray crystallography.

The allylic alcohol 10 (Chart I) was chosen as the most convenient precursor of the spiro epoxides 1 and 2. Alternative precursors such as 4-methylene- 5α -cholestan-3one³ or 4-oxo- 5α -cholestan- 3β -ol are labile or difficult to homologate. It was intended to generate the epoxides 1

Chart I

and 2 from the allylic alcohol 10 by appropriate asymmetric epoxidation procedures.⁴ There is ample precedent for hydroxy-assisted organic peroxyacid epoxidation of allylic alcohols to furnish epoxides in which the stereochemistry of the epoxide is determined by the configuration of the hydroxy group.⁵ Peroxyacid oxidation of 4methylene- 5α -cholestan- 3β -ol (10) might therefore be expected to furnish predominantly the (4'S)-spiro epoxide

กกษ.

[†]The Johns Hopkins University School of Medicine. [†]National Institutes of Health.

ŪO₂CH₃ ĈD₂CH₃ 6 5 H>0**R** 7**a)** R= H 8 b) R= Ms THPO 10. R= H 9 11, R= THP

⁽¹⁾ Bartlett, D. L.; Robinson, C. H. J. Am. Chem. Soc. 1982, 104, 4729-4730.

 ⁽²⁾ Ekhato, I. V.; Robinson, C. H. Fed. Proc. 1987, 46, 1954.
 (3) Czarny, M. R.; Nelson, J. A.; Spencer, T. A. J. Org. Chem. 1977,

^{42, 2941-2944.}

 ⁽⁴⁾ Finn, M. G.; Sharpless, K. B. In Asymmetric Synthesis; Morrison,
 J. D., Ed.; Academic: New York, 1986; Vol. 5, p 247.
 (5) Fung, S.; Siddall, J. B. J. Am. Chem. Soc. 1980, 102, 6580-6581.